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The goals of this talk are the following :

• compare pre-Calabi–Yau algebras with others algebraic structures
which are also properadic ;

• using this properadic description to deduce some homotopical
results.

This talk is based on a joint work with Bruno Vallette (Univ. Paris
Sorbonne Paris Nord).
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Properads and properadic
gebras



S-bimodule

Definition
A S-bimodule M is a collection of dg vector spaces {M(s, e)} indexed
by s ∈ N∗ and e ∈ N, with a right action of Se and a left action of Ss .

We will represent an element m of a S-bimodule M(s, e) by a directed
graph as follows:

1

1

· · ·
2 e

· · ·
s

m
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Connected product (Vallette)

The connected product M � N of two S-bimodules M and N is given by
"the sum of directed two-levelled connected graphs where each vertex v

with ev inputs and sv outputs is labelled by an element of νj ∈ N(sv , ev )

if v is in the upper line or µj ∈ M(sv , ev ) if v is the bottom line".

ν1 ν2 ν3

µ1 µ2

Proposition (Vallette)
The category (S-bimod,�, I ) is monoidal.
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Properad (Vallette)

Definition
A properad is a monoid in the category (S-bimod,�, I ).

The first important example: EndV
Let V be a dg vector space. The S-bimodule EndV is defined by

EndV (s, e) = Homk(V⊗e ,V⊗s)

and the composition of morphisms gives us the properadic structure.

EndV � EndV −→ EndV

7−→

A wide class of examples:
Operads can be viewed as properads concentrated in arities (1, ∗).
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Free properad

Proposition (Vallette)
For an S-bimodule V , there exists a free properad G (V ).

G (V )(s, e) =
⊕

v1

v2v3

v4

with vi ∈ V

One can define some properads by generators and relations.
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P-gebras

Definition
Let A be dg vector space and P be a properad. A structure of
P-gebra on A is a morphism of properads P → EndA.

Example: An As-gebra is an associative algebra

As =
G
( )

〈
−

〉 −→ EndA

7−→ (µ : A⊗ A→ A)

such that µ(µ⊗ A) = µ(A⊗ µ).
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First example: DPois

Double Poisson gebras (Van den Bergh) are encoded by the properad
DPois which is defined by the following presentation:

• the generators, which live in degree 0, are

• a product in arities (1, 2)

1 2

1

• a double bracket in arities (2, 2)
1

1

2

2

= −
2

2

1

1

• the relations are :

• associativity
1

1

2 3

−
1

1

2 3

• derivation
1

1

2

2 3

−
1

2 1 3

2

−
2

2 31

1

• double-Jacobi
1

1

2

2

3

3

+
2

2

3

3

1

1

+
3

3

1

1

2

2
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Second example: V

V gebras (Tradler–Zeinalian and Poirier–Tradler) are encoded by the
properad V which is given by the following presentation:

• the generators are

• a product in arities (1, 2)

1 2

1
in degree 0

• a symmetric co-inner product in arities (2, 0)
1 2

=
2 1

in

degree −2

• the relations are

• associativity
1

1

2 3

−
1

1

2 3

• compatibility
1

1

2

−
2

1

1
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Properadic gebras up to
homotopy



Motivation

With E. Hoffbeck and B. Vallette, one of our goals is to give a explicit
description of the ∞-category of P-gebras given by the localisation
P-geb[(

∼→)−1] of the category of P-gebras by quasi-isomorphisms.

We want to extend/enhance the following result available for operadic
algebras

Theorem (Vallette)
Let O be an operad and O∞ = Ω(C ) be a cofibrant resolution of O.
We have an equivalence of category

ho(O-alg) ' ho(∞− O∞-alg).

where

• O-alg is the model category of O-algebras with (strict) morphisms ;

• ∞− O∞-alg is the model category where the objects are O-algebras
up to homotopy and the morphisms are ∞-morphisms.
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Motivation

Problems
Some difficulties appear for the properadic case:

• for a properad P, we have not free P-gebras ;

• the category P-geb has not a model structure.

but

Some constructions are possible

• One can defined the category ∞−P∞-geb with P∞ = ΩC .

• Some theorems can be extend from operadic case to properadic case.
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Coproperad and cobar construction

Definition

• A coproperad (C ,∆: C → C � C ) is a comonoid in the monoidal
category (S-bimod,�, I ).

• When C is coaugmented for η : I → C , we denote C = Ker(η).

• The cobar construction is the functor

Ω: (C ,∆) 7→ (G (s−1C ), ∂∆)

where G (C ) is the (quasi-)free properad constructed on C and ∂∆ is
constructed with the partial coproduct

∆(1,1) : C
∆−→ C � C

π(1,1)−−−→ C �(1,1) C .

c1

c2

∈ (C �(1,1) C )(2, 3)
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Find cofibrant resolution via Koszul duality

Some quadratic properads have a nice homological property, the
Koszulness, which give us an explicit and minimal cofibrant resolution of
it.

Definition–Proposition (Vallette)
Let P = G (V )/〈R〉 be a quadratic properad where V is finite
dimensional.

• The Koszul dual of P is the coproperad

P¡ =
(
P !
)∗

with P ! = G (s−1V ∗)/〈s−2R⊥〉.

• If P is Koszul, then
Ω(P¡)

∼−→P

is the minimal cofibrant resolution. In this case, the P-gebra
structure up to homotopy is encoded by P∞ = Ω(P¡).
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The example of DPois 1

Recall that

DPois =

G

 1 2

1
;

1

1

2

2

= −
2

2

1

1




1

1

2 3

−

1

1

2 3

;

1

1

2

2 3

−

1

2 1 3

2

−

2

2 31

1

;

1

1

2

2

3

3

+

2

2

3

3

1

1

+

3

3

1

1

2

2



,
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The example of DPois 2

then we have

DPois! =

G

 1 2

1
;

1

1

2

2

= −
2

2

1

1




1

1

2 3

+

1

1

2 3

;

1

1

2

;

1

1

2

2

;

1

1

2

2 3

+

1

2 1 3

2

1

1

2

3 2

+

2

3

1

1 2

;

1

1

2

2

3

3

−
2

2

3

3

1

1



,

where ν =

1 2

1
has degree − 1 and

1

1

2

2

has degree − 1.
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The example of DPois 3

Theorem (L.)
The properad DPois is Koszul and the properad DPois∞ is generated by

j1

Λ1

j2

Λ2

···

···

jm

Λm

= (−1)n|Λ1|+|Λm|

j2

Λ2

jm

Λm

···

···

j1

Λ1

,

in degree 1− n and where Λ1 t · · · t Λm = {1, . . . , n} is a partition of n
(so |Λi | > 0) and {j1, . . . , jm} = {1, . . . ,m}.

"Proposition" (L.–Vallette 2023)
We give an explicit description of the differential ∂∆ and the structure
of DPois∞-gebra.
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The example of V 1

Recall that

V =

G

 1 2

1
;

1 2
=

2 1


 1

1

2 3

−
1

1

2 3

;

1

1

2

−
2

1

1

 ,

where the first generator has degree 0 and the second one has degree −2 .
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The example of V 2

V! =

G

 1 2

1
;

1 2
=

2 1


 1

1

2 3

+

1

1

2 3

;

1

1

2

+

2

1

1

;

1


,

where the first generator has degree −1 and the second one has degree 1 .
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The example of V 3

Question (by Poirier–Tradler)
We do not know if the properad V is Koszul or not.

However, we can consider the Ω(V¡)-gebras, called V∞-gebras.

Problem
We do not have a explicit description of Ω(V¡). (work in progress)
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Pre-Calabi–Yau algebras from a
properadic point of view



An extension of DPois!

We consider the unital extension of DPois!.

uDPois! =

G

 1 2

1
;

1

1

2

2

= −
2

2

1

1

;
1




1

1

2 3

+

1

1

2 3

;

1

1

+

1

1

;

1

1

−
1

1

;

1

1

2

;

1

1

2

2

1

1

2

2 3

+

1

2 1 3

2

;

1

1

2

3 2

+

2

3

1

1 2

;

1

1

2

2

3

3

−
2

2

3

3

1

1



,

where ν =

1 2

1
has degree − 1 ,

1

1

2

2

has degree − 1 ,

and where u =
1

has degree 1 .
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Attention

The linear dual of uDPois! is not a coproperad because the terms with
zero input produce infinite sums in the decomposition map.
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Codioperad

Definition : codioperad
A codioperad is a coproperad with decomposition map producing only
graphs with genus zero.

Example

DPois¡ is a coaug. codioperad, because the relation in DPois! kills
all graphs with genus > 0 in the decomposition map.
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Pre-Calabi–Yau algebras

Example(
uDPois!

Ku

)∗
, where u = is a coaug. codioperad. because

• the relations and kill all graphs with genus > 0 in the

decomposition map;

• we have killed u = which produced infinite sums in the

decomposition map of the linear dual of uDPois!.

We denote it CpCY.

Proposition (L.–Vallette 2023)
The Ω(CpCY)-gebras are pre-Calabi–Yau algebras.

It is a corollary of a result of Yeung and Kontsevich–Takeda–Vlassopoulos
: they show that pre-Calabi–Yau algebras are encoded by a cobar of
codioperad of multi-corollas.
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Produce codioperad from coproperad

Proposition (L.–Vallette 2023)
Let P = G (E )/〈R〉 be a properad with E (1, 0) = 0. Then
Pg=0 := Gg=0(E )/〈Rg=0〉 defines by graphs of genus 0 and the
composition along graphs of genus 0 is a sub-properad of P. Moreover,
(Pg=0)∗ is a codioperad.

Example

We have V!
g=0 is a sub-properad of V!. Then we have a surjection

V¡ � (V!
g=0)∗.

Theorem (L.–Vallette 2023)

The codioperads (V!
g=0)∗ and CpCY are isomorphic.
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Resume

Theorem (L.–Vallette 2023)
We have surjections of coproperads

V¡ � (V!
g=0)∗ ∼= CpCY � DPois¡

which induce surjections of properads

V∞ � ΩCpCY � DPois∞,

and so the inclusion functors

DPois∞-geb→ ΩCpCY-geb→ V∞-geb

where morphisms are morphisms of dg vector spaces which commute
with the structure.
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Consequences for
pre-Calabi–Yau algebras



The description of pre-Calabi–Yau algebras as gebras over the properad
ΩCpCY implies many consequences.

In the rest of this talk, we will consider C a coaug. coproperad. You can
think that C is

• DPois¡ for double Poisson gebras up to homotopy ;

• CpCY for pre-Calabi–Yau algebras ;

• V¡ for V∞-gebras.
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Existence of ∞-morphisms : description of structure

Let C be a coaug. coproperad and let A be a dg-vector space. Recall
that a ΩC -gebra structure on A is a morphism of (dg) properads
ΩC → EndA.

Proposition (Vallette, Hoffbeck–L.–Vallette 2020)
A morphism of properads ΩC → EndA corresponds to a map
α : C → EndA of S-bimodules of degree −1 satisfying the
Maurer–Cartan equation

∂α + α ? α = 0

where :

• ∂α = dEndA
◦ α− α ◦ dC ;

• α ? α : C
∆(1,1)−−−→ C �(1,1) C

α�α−−−→ EndA�EndA
compo.−−−−→ EndA .

(Remind that the isomorphism
MC(Hom(C ,EndA))) ∼= Homoperad(ΩC ,EndA) presented by Wai-Kit) 27



Existence of ∞-morphisms : some notations

• For C a coproperad, using the counit of C , we have the surjection
C � C � C � C where the terms of C � C are of the form

c1 c2 c3

c0

with c0 ∈ C .

• We have also a surjection C � C � C � C where the terms of
C � C are of the form

c1 c2 c3

c0
with c0 ∈ C .

• For A and B two dg vector spaces, HomA
B the S-bimodule given, for

(s, e) ∈ N2 by

HomA
B(s, e) = HomK(A⊗e ,B⊗s)
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Existence of ∞-morphisms : definition

Definition (Hoffbeck–L.–Vallette 2020)

Let C be a coaug. coproperad. Let (A, α : C → EndA) and
(B, β : C → EndB) be two ΩC -gebras.

An ∞-morphism ϕ : A B is a morphism ϕ : C → HomA
B of

S-bimodules satisfying the Maurer–Cartan equation

∂ϕ = ϕ� α− β � ϕ.

where

• ϕ� α : C
∆−→ C � C � C � C

ϕ�α−−−→ HomA
B �EndA

compo.−−−−→ HomA
B

• β � ϕ : C
∆−→ C � C � C � C

β�ϕ−−−→ EndB �HomA
B

compo.−−−−→ HomA
B

We denote by ϕ0 the composition I
η−→ C

ϕ−→ HomA
B , where η is the

coaug. of C which corresponds to a chain map ϕ0 : A→ B.
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Existence of ∞-morphisms : recognize an other definition

Proposition (L.–Vallette 2023)
For pre-Calabi–Yau algebras, this definition coincides with the definition
of morphisms given by Kontsevich–Takeda–Vlassopoulos.

1

1 2 3

2

6 7

4 5 9

8 3
←→ 1

2

3

8

9 4

5

6

7

1
2

3

(On the right, you can recognize the splitting presented by Wai-Kit this
morning) 30



Combinatoric for the decomposition map

Important remark
The combinatoric of "roundabouts" is useful to describe the
decomposition map of DPois¡ or CpCY.

1

1

2

2

3

3 4

4

5 6

←→

1

2

3

4

1

2
3

4

5

6

31



Combinatoric for the decomposition map

Important remark
The combinatoric of "roundabouts" is useful to describe the
decomposition map of DPois¡ or CpCY.

1 2 5 6 3 4

1 2 4 3

←→

1

2

3

4

1

2
3

4

5

6
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Existence of ∞-morphisms : composition

Definition–Proposition (Hoffbeck–L.–Vallette 2020)
Let ϕ : (A, α) (B, β) and ψ : (B, β) (C , γ) two ∞-morphisms of
ΩC -gebras. The composite of ∞-morphisms ψ } ϕ is defined by

ψ } ϕ : C
∆−→ C � C

ψ�ϕ−−−→ HomB
C �HomA

B
compo.−−−−→ HomA

C .

The category ∞− ΩC -geb is the category of ΩC -gebras with
∞-morphisms and there is a canonical functor ΩC -geb→∞−ΩC -geb.

Corollary (L.–Vallette 2023)
We have the commutative diagram of inclusion functors

DPois∞-geb ΩCpCY-geb V∞-geb

∞−DPois∞-geb ∞− ΩCpCY-geb ∞−V∞-geb
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Good properties of ∞-morphisms

Let ϕ : (A, α) (B, β) be an ∞-morphism.

• ϕ is an ∞-isomorphism if ϕ0 : A→ B is an isomorphism.

Proposition (Hoffbeck–L.–Vallette 2020)
ϕ is invertible in ∞− ΩC -geb if and only if ϕ is an ∞-isomorphism.

• ϕ is an ∞-quasi-isomorphism if ϕ0 : A→ B is a quasi-isomorphism.

Proposition (Hoffbeck–L.–Vallette 2020)
If ϕ is an ∞-quasi-isomorphism, then there exists an
∞-quasi-isomorphism ψ : (B, β) (A, α) whose ψ0 induces the
homology inverse of ϕ0.
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Transfer theorem

Recall that a contraction of a dg vector space (A, dA) is another dg
vector space (H, dH) equipped with chain maps i and p and a homotopy
h of degree 1

(A, dA) (H, dH)
p

h
i

,

satisfying

pi = idH , idA−ip = dAh + hdA , hi = 0 , ph = 0 , and h2 = 0 .

Theorem (Hoffbeck–L.–Vallette, 2020)
Let (A, α) be a ΩC -gebra and let H be a contraction of A. There exists
an (explicit) structure of ΩC -gebra on H and (explicit) extensions of i
and p into ∞-quasi-isomorphisms.
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Remark about transfer for pre-Calabi–Yau structures

Proposition (L.–Vallette 2023)
The transferred structure of a pre-Calabi–Yau algebra is explicitly given
in terms of the underlying combinatoric"

1

p

2
p

3

p

4

p

5
p

6

p

1i

2
i

3
i

4
i

5
i

6
i

7i

8
i 9

i 10
i

11 i

12
i

13

i

h

h

h

h
h
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A first step to understand ΩC -geb[(
∼→)−1]

Theorem (Hoffbeck–L.–Vallette to appear in 2024)
Two ΩC -gebras are ∞-quasi-isomorphic if and only if they are related
by a zig-zag of (strict) quasi-isomorphisms:

∃ ∞-quasi-isomorphism

(A, α) (B, β)∼ ⇐⇒
∃ zig-zag of quasi-isomorphisms

(A, α) • • • • (B, β)∼ ∼ ∼ ∼ .

This result will be useful to prove some formality results.
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Next step

Hoffbeck–L.–Vallette to appear in 2024
We construct a simplicial enrichment ∆− ΩC -geb of the category
ΩC -geb such that

π0(∆− ΩC -geb) ∼= ho(∞− ΩC -geb).

38



Thanks for your attention.
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