Properadic calculus applied to pre-Calabi–Yau algebras

Johan Leray

Pre-Calabi-Yau day - Institut Fourier, Grenoble - 3 november 2023

Nantes University

The goals of this talk are the following :

- compare pre-Calabi–Yau algebras with others algebraic structures which are also *properadic* ;
- using this properadic description to deduce some homotopical results.

This talk is based on a joint work with Bruno Vallette (Univ. Paris Sorbonne Paris Nord).

Properads and properadic gebras

Properadic gebras up to homotopy

Pre-Calabi-Yau algebras from a properadic point of view

Consequences for pre-Calabi-Yau algebras

Properads and properadic gebras

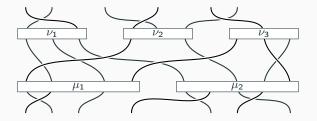
Definition

A \mathfrak{S} -bimodule M is a collection of dg vector spaces $\{M(s, e)\}$ indexed by $s \in \mathbb{N}^*$ and $e \in \mathbb{N}$, with a right action of \mathfrak{S}_e and a left action of \mathfrak{S}_s .

We will represent an element m of a \mathfrak{S} -bimodule M(s, e) by a directed graph as follows:

Connected product (Vallette)

The connected product $M \boxtimes N$ of two \mathfrak{S} -bimodules M and N is given by "the sum of directed two-levelled **connected** graphs where each vertex vwith e_v inputs and s_v outputs is labelled by an element of $\nu_j \in N(s_v, e_v)$ if v is in the upper line or $\mu_j \in M(s_v, e_v)$ if v is the bottom line".



Proposition (Vallette)

The category (\mathfrak{S} -bimod, \boxtimes , I) is monoidal.

Properad (Vallette)

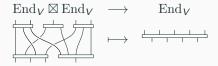
Definition

A properad is a monoid in the category (\mathfrak{S} -bimod, \boxtimes , I).

The first important example: End_V Let V be a dg vector space. The \mathfrak{S} -bimodule End_V is defined by

 $\operatorname{End}_V(s, e) = \operatorname{Hom}_k(V^{\otimes e}, V^{\otimes s})$

and the composition of morphisms gives us the properadic structure.

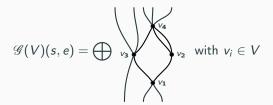


A wide class of examples:

Operads can be viewed as properads concentrated in arities (1, *).

Proposition (Vallette)

For an \mathfrak{S} -bimodule V, there exists a free properad $\mathscr{G}(V)$.



One can define some properads by generators and relations.

$$\mathscr{P}$$
-gebras

Definition

Let A be dg vector space and \mathscr{P} be a properad. A *structure of* \mathscr{P} -gebra on A is a morphism of properads $\mathscr{P} \to \operatorname{End}_A$.

Example: An As-gebra is an associative algebra

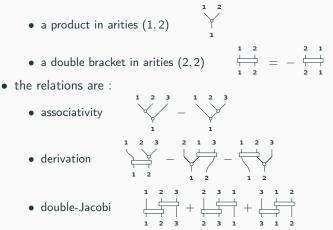
$$As = \frac{\mathscr{G}\left(\curlyvee\right)}{\left<\checkmark - \checkmark\right>} \longrightarrow \mathsf{End}_{\mathcal{A}}$$
$$\curlyvee \qquad \longmapsto (\mu \colon \mathcal{A} \otimes \mathcal{A} \to \mathcal{A})$$

such that $\mu(\mu \otimes A) = \mu(A \otimes \mu)$.

First example: DPois

Double Poisson gebras (Van den Bergh) are encoded by the properad DPois which is defined by the following presentation:

• the generators, which live in degree 0, are



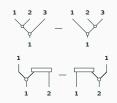
Second example: V

 $\rm V$ gebras (Tradler–Zeinalian and Poirier–Tradler) are encoded by the properad $\rm V$ which is given by the following presentation:

• the generators are

• a product in arities
$$(1,2)$$
 \downarrow in degree 0
• a symmetric co-inner product in arities $(2,0)$ \bigcirc $=$ \bigcirc in degree -2

- the relations are
 - associativity
 - compatibility



Properadic gebras up to homotopy

Motivation

With E. Hoffbeck and B. Vallette, one of our goals is to give a explicit description of the ∞ -category of \mathscr{P} -gebras given by the localisation \mathscr{P} -geb[$(\stackrel{\sim}{\rightarrow})^{-1}$] of the category of \mathscr{P} -gebras by quasi-isomorphisms.

We want to extend/enhance the following result available for operadic algebras

Theorem (Vallette)

Let \mathcal{O} be an operad and $\mathcal{O}_{\infty} = \Omega(\mathcal{C})$ be a cofibrant resolution of \mathcal{O} . We have an equivalence of category

$$\operatorname{ho}(\mathscr{O}\operatorname{-alg})\simeq\operatorname{ho}(\infty-\mathscr{O}_{\infty}\operatorname{-alg}).$$

where

- \mathcal{O} -alg is the model category of \mathcal{O} -algebras with (strict) morphisms ;
- ∞ 𝒪_∞-alg is the model category where the objects are 𝒪-algebras up to homotopy and the morphisms are ∞-morphisms.

Problems

Some difficulties appear for the properadic case:

- for a properad \mathscr{P} , we have not free \mathscr{P} -gebras ;
- the category \mathscr{P} -geb has not a model structure.

but

Some constructions are possible

- One can defined the category $\infty \mathscr{P}_{\infty}$ -geb with $\mathscr{P}_{\infty} = \Omega \mathscr{C}$.
- Some theorems can be extend from operadic case to properadic case.

Coproperad and cobar construction

Definition

- A coproperad $(\mathscr{C}, \Delta \colon \mathscr{C} \to \mathscr{C} \boxtimes \mathscr{C})$ is a comonoid in the monoidal category (\mathfrak{S} -bimod, \boxtimes, I).
- When \mathscr{C} is coaugmented for $\eta: I \to \mathscr{C}$, we denote $\overline{\mathscr{C}} = \operatorname{Ker}(\eta)$.
- The cobar construction is the functor

$$\Omega \colon (\mathscr{C}, \Delta) \mapsto (\mathscr{G}(\mathrm{s}^{-1}\overline{\mathscr{C}}), \partial_{\Delta})$$

where $\mathscr{G}(\overline{\mathscr{C}})$ is the (quasi-)free properad constructed on $\overline{\mathscr{C}}$ and ∂_{Δ} is constructed with the partial coproduct

$$\Delta_{(1,1)} \colon \overline{\mathscr{C}} \xrightarrow{\Delta} \mathscr{C} \boxtimes \mathscr{C} \xrightarrow{\pi_{(1,1)}} \mathscr{C} \boxtimes_{(1,1)} \mathscr{C}.$$

$$\overbrace{\substack{c_1 \\ c_1}}^{c_2} \in (\mathscr{C} \boxtimes_{(1,1)} \mathscr{C})(2,3)$$

Find cofibrant resolution via Koszul duality

Some quadratic properads have a nice homological property, the Koszulness, which give us an explicit and minimal cofibrant resolution of it.

Definition-Proposition (Vallette)

Let $\mathscr{P} = \mathscr{G}(V)/\langle R \rangle$ be a quadratic properad where V is finite dimensional.

• The Koszul dual of ${\mathscr P}$ is the coproperad

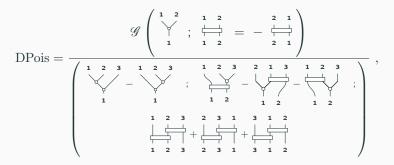
$$\mathscr{P}^{\mathsf{i}} = (\mathscr{P}^{\mathsf{!}})^* \text{ with } \mathscr{P}^{\mathsf{!}} = \mathscr{G}(\mathrm{s}^{-1}V^*)/\langle \mathrm{s}^{-2}R^{\perp}\rangle.$$

• If ${\mathscr P}$ is Koszul, then

$$\Omega(\mathscr{P}^{\mathsf{i}}) \xrightarrow{\sim} \mathscr{P}$$

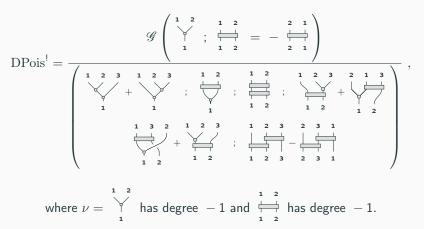
is the minimal cofibrant resolution. In this case, the \mathscr{P} -gebra structure up to homotopy is encoded by $\mathscr{P}_{\infty} = \Omega(\mathscr{P}^{\mathfrak{j}}).$

Recall that



The example of DPois 2

then we have



Theorem (L.)

The properad DPois is Koszul and the properad DPois_∞ is generated by

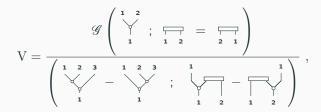


in degree 1 - n and where $\Lambda_1 \sqcup \cdots \sqcup \Lambda_m = \{1, \ldots, n\}$ is a partition of n (so $|\Lambda_i| > 0$) and $\{j_1, \ldots, j_m\} = \{1, \ldots, m\}$.

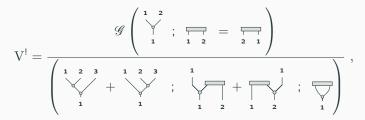
"Proposition" (L.-Vallette 2023)

We give an explicit description of the differential ∂_Δ and the structure of $\mathrm{DPois}_\infty\text{-gebra}.$

Recall that



where the first generator has degree 0 and the second one has degree -2 .



where the first generator has degree -1 and the second one has degree 1 .

Question (by Poirier-Tradler)

We do not know if the properad ${\rm V}$ is Koszul or not.

However, we can consider the $\Omega({\rm V}^{\rm i})\text{-gebras},$ called ${\rm V}_\infty\text{-gebras}.$

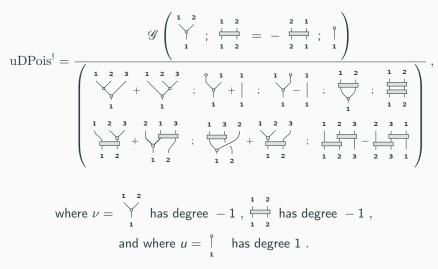
Problem

We do not have a explicit description of $\Omega(V^i)$. (work in progress)

Pre-Calabi–Yau algebras from a properadic point of view

An extension of DPois[!]

We consider the unital extension of DPois[!].



Attention

The linear dual of uDPois¹ is **not** a coproperad because the terms with zero input produce infinite sums in the decomposition map.

Definition : codioperad

A codioperad is a coproperad with decomposition map producing only **graphs with genus zero**.

Example

 DPois^{i} is a coaug. codioperad, because the relation \rightleftharpoons in $\mathrm{DPois}^{!}$ kills all graphs with genus > 0 in the decomposition map.

Pre-Calabi-Yau algebras

Example

$$\left(rac{\mathrm{uDPois'}}{\mathbb{K}u}
ight)^*$$
, where $u=\mathring{1}$ is a coaug. codioperad. because

- the relations and the kill all graphs with genus > 0 in the decomposition map;
- we have killed u = ¹ which produced infinite sums in the decomposition map of the linear dual of uDPois[!].

```
We denote it C_{pCY}.
```

```
Proposition (L.-Vallette 2023)
```

The $\Omega(C_{pCY})$ -gebras are pre-Calabi–Yau algebras.

It is a corollary of a result of Yeung and Kontsevich–Takeda–Vlassopoulos : they show that pre-Calabi–Yau algebras are encoded by a cobar of codioperad of multi-corollas.

Proposition (L.-Vallette 2023)

Let $P = \mathscr{G}(E)/\langle R \rangle$ be a properad with E(1,0) = 0. Then $P_{g=0} := \mathscr{G}_{g=0}(E)/\langle R_{g=0} \rangle$ defines by graphs of genus 0 and the composition along graphs of genus 0 is a sub-properad of P. Moreover, $(P_{g=0})^*$ is a codioperad.

Example

We have $V_{g=0}^!$ is a sub-properad of $V^!$. Then we have a surjection

$$\mathrm{V}^{i} \twoheadrightarrow (\mathrm{V}^{!}_{\mathrm{g=0}})^{*}.$$

Theorem (L.-Vallette 2023)

The codioperads $({\rm V}^!_{{\rm g}=0})^*$ and ${\rm C}_{{\rm pCY}}$ are isomorphic.

Resume

Theorem (L.-Vallette 2023)

We have surjections of coproperads

$$\mathrm{V}^{i} \twoheadrightarrow (\mathrm{V}^{!}_{\mathrm{g=0}})^{*} \cong \mathrm{C}_{\mathrm{pCY}} \twoheadrightarrow \mathrm{DPois}^{i}$$

which induce surjections of properads

$$V_{\infty} \twoheadrightarrow \Omega C_{pCY} \twoheadrightarrow DPois_{\infty},$$

and so the inclusion functors

$$\mathrm{DPois}_{\infty}\text{-geb} \rightarrow \Omega \mathrm{C}_{\mathrm{pCY}}\text{-geb} \rightarrow \mathrm{V}_{\infty}\text{-geb}$$

where morphisms are morphisms of dg vector spaces which commute with the structure.

Consequences for pre-Calabi–Yau algebras

The description of pre-Calabi–Yau algebras as gebras over the properad $\Omega C_{\rm pCY}$ implies many consequences.

In the rest of this talk, we will consider ${\mathscr C}$ a coaug. coproperad. You can think that ${\mathscr C}$ is

- $\bullet \ \mathrm{DPois}^i$ for double Poisson gebras up to homotopy ;
- + $\mathrm{C}_{\mathrm{pCY}}$ for pre-Calabi–Yau algebras ;
- V^{i} for $\mathrm{V}_{\infty}\text{-gebras}.$

Existence of ∞ -morphisms : description of structure

Let \mathscr{C} be a coaug. coproperad and let A be a dg-vector space. Recall that a $\Omega \mathscr{C}$ -gebra structure on A is a morphism of (dg) properads $\Omega \mathscr{C} \to \operatorname{End}_A$.

Proposition (Vallette, Hoffbeck-L.-Vallette 2020)

A morphism of properads $\Omega \mathscr{C} \to \operatorname{End}_A$ corresponds to a map $\alpha \colon \overline{\mathscr{C}} \to \operatorname{End}_A$ of \mathfrak{S} -bimodules of degree -1 satisfying the Maurer–Cartan equation

$$\partial \alpha + \alpha \star \alpha = \mathbf{0}$$

where :

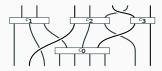
•
$$\partial \alpha = d_{\operatorname{End}_A} \circ \alpha - \alpha \circ d_{\mathscr{C}}$$
;
• $\alpha \star \alpha : \mathscr{C} \xrightarrow{\Delta_{(1,1)}} \mathscr{C} \boxtimes_{(1,1)} \mathscr{C} \xrightarrow{\alpha \boxtimes \alpha} \operatorname{End}_A \boxtimes \operatorname{End}_A \xrightarrow{\operatorname{compo.}} \operatorname{End}_A$.

(Remind that the isomorphism $MC(Hom(\mathscr{C}, End_A))) \cong Hom_{operad}(\Omega \mathscr{C}, End_A)$ presented by Wai-Kit)

27

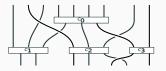
Existence of ∞ -morphisms : some notations

• For \mathscr{C} a coproperad, using the counit of \mathscr{C} , we have the surjection $\mathscr{C} \boxtimes \mathscr{C} \twoheadrightarrow \mathscr{C} \lhd \mathscr{C}$ where the terms of $\mathscr{C} \lhd \mathscr{C}$ are of the form



with $c_0 \in \overline{\mathscr{C}}$.

• We have also a surjection $\mathscr{C} \boxtimes \mathscr{C} \twoheadrightarrow \mathscr{C} \rhd \mathscr{C}$ where the terms of $\mathscr{C} \rhd \mathscr{C}$ are of the form



with $c_0 \in \overline{\mathscr{C}}$.

• For A and B two dg vector spaces, Hom_B^A the \mathfrak{S} -bimodule given, for $(s,e)\in\mathbb{N}^2$ by

$$\operatorname{Hom}_B^A(s,e) = \operatorname{Hom}_{\mathbb{K}}(A^{\otimes e}, B^{\otimes s})$$

Definition (Hoffbeck-L.-Vallette 2020)

Let \mathscr{C} be a coaug. coproperad. Let $(A, \alpha : \overline{\mathscr{C}} \to \operatorname{End}_A)$ and $(B, \beta : \overline{\mathscr{C}} \to \operatorname{End}_B)$ be two $\Omega \mathscr{C}$ -gebras.

An ∞ -morphism $\varphi \colon A \rightsquigarrow B$ is a morphism $\varphi \colon \mathscr{C} \to \operatorname{Hom}_B^A$ of \mathfrak{S} -bimodules satisfying the Maurer–Cartan equation

$$\partial \varphi = \varphi \rhd \alpha - \beta \lhd \varphi.$$

where

• $\varphi \rhd \alpha \colon \mathscr{C} \xrightarrow{\Delta} \mathscr{C} \boxtimes \mathscr{C} \twoheadrightarrow \mathscr{C} \rhd \mathscr{C} \xrightarrow{\varphi \rhd \alpha} \mathsf{Hom}_B^A \boxtimes \mathsf{End}_A \xrightarrow{\mathrm{compo.}} \mathsf{Hom}_B^A$

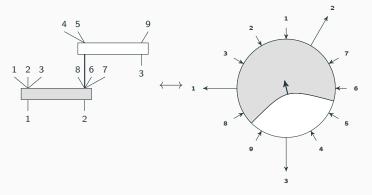
• $\beta \lhd \varphi \colon \mathscr{C} \xrightarrow{\Delta} \mathscr{C} \boxtimes \mathscr{C} \twoheadrightarrow \mathscr{C} \lhd \mathscr{C} \xrightarrow{\beta \lhd \varphi} \operatorname{End}_B \boxtimes \operatorname{Hom}_B^A \xrightarrow{\operatorname{compo.}} \operatorname{Hom}_B^A$

We denote by φ_0 the composition $I \xrightarrow{\eta} \mathscr{C} \xrightarrow{\varphi} \operatorname{Hom}_B^A$, where η is the coaug. of \mathscr{C} which corresponds to a chain map $\varphi_0 \colon A \to B$.

Existence of ∞ -morphisms : recognize an other definition

Proposition (L.-Vallette 2023)

For pre-Calabi–Yau algebras, this definition coincides with the definition of morphisms given by Kontsevich–Takeda–Vlassopoulos.

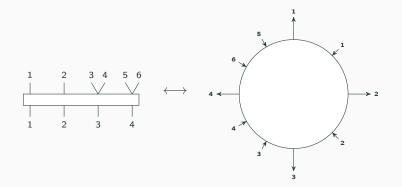


(On the right, you can recognize the splitting presented by Wai-Kit this morning)

Combinatoric for the decomposition map

Important remark

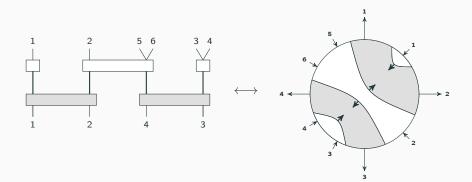
The combinatoric of "roundabouts" is useful to describe the decomposition map of DPois^i or $\mathrm{C}_{\mathrm{pCY}}.$



Combinatoric for the decomposition map

Important remark

The combinatoric of "roundabouts" is useful to describe the decomposition map of DPois^i or $\mathrm{C}_{\mathrm{pCY}}.$



Existence of ∞ -morphisms : composition

Definition-Proposition (Hoffbeck-L.-Vallette 2020)

Let $\varphi : (A, \alpha) \rightsquigarrow (B, \beta)$ and $\psi : (B, \beta) \rightsquigarrow (C, \gamma)$ two ∞ -morphisms of $\Omega \mathscr{C}$ -gebras. The composite of ∞ -morphisms $\psi \odot \varphi$ is defined by

$$\psi \odot \varphi : \mathscr{C} \xrightarrow{\Delta} \mathscr{C} \boxtimes \mathscr{C} \xrightarrow{\psi \boxtimes \varphi} \mathsf{Hom}^{\mathcal{B}}_{\mathcal{C}} \boxtimes \mathsf{Hom}^{\mathcal{A}}_{\mathcal{B}} \xrightarrow{\mathrm{compo.}} \mathsf{Hom}^{\mathcal{A}}_{\mathcal{C}}.$$

The category $\infty - \Omega \mathscr{C}$ -geb is the category of $\Omega \mathscr{C}$ -gebras with ∞ -morphisms and there is a canonical functor $\Omega \mathscr{C}$ -geb $\rightarrow \infty - \Omega \mathscr{C}$ -geb.

Corollary (L.-Vallette 2023)

We have the commutative diagram of inclusion functors

$$\begin{array}{cccc} \mathrm{DPois}_{\infty}\text{-}\mathsf{geb} & \longrightarrow & \Omega\mathrm{C}_{\mathrm{pCY}}\text{-}\mathsf{geb} & \longrightarrow & \mathrm{V}_{\infty}\text{-}\mathsf{geb} \\ & & & \downarrow & & \downarrow \\ & & & & \downarrow & & \downarrow \\ \infty - \mathrm{DPois}_{\infty}\text{-}\mathsf{geb} & \longrightarrow & \infty - & \Omega\mathrm{C}_{\mathrm{pCY}}\text{-}\mathsf{geb} & \longrightarrow & \infty - & \mathrm{V}_{\infty}\text{-}\mathsf{geb} \end{array}$$

Let $\varphi : (A, \alpha) \rightsquigarrow (B, \beta)$ be an ∞ -morphism.

• φ is an ∞ -isomorphism if $\varphi_0 : A \to B$ is an isomorphism.

Proposition (Hoffbeck-L.-Vallette 2020)

 φ is invertible in $\infty - \Omega \mathscr{C}$ -geb if and only if φ is an ∞ -isomorphism.

• φ is an ∞ -quasi-isomorphism if $\varphi_0 : A \to B$ is a quasi-isomorphism.

Proposition (Hoffbeck-L.-Vallette 2020)

If φ is an ∞ -quasi-isomorphism, then there exists an ∞ -quasi-isomorphism $\psi : (B, \beta) \rightsquigarrow (A, \alpha)$ whose ψ_0 induces the homology inverse of φ_0 .

Recall that a *contraction* of a dg vector space (A, d_A) is another dg vector space (H, d_H) equipped with chain maps *i* and *p* and a homotopy *h* of degree 1

$$h \stackrel{p}{\longleftarrow} (A, d_A) \xrightarrow{p}_{i} (H, d_H) ,$$

satisfying

$$pi = id_H$$
, $id_A - ip = d_A h + hd_A$, $hi = 0$, $ph = 0$, and $h^2 = 0$.

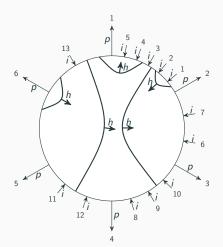
Theorem (Hoffbeck–L.–Vallette, 2020)

Let (A, α) be a ΩC -gebra and let H be a contraction of A. There exists an (explicit) structure of ΩC -gebra on H and (explicit) extensions of iand p into ∞ -quasi-isomorphisms.

Remark about transfer for pre-Calabi-Yau structures

Proposition (L.-Vallette 2023)

The transferred structure of a pre-Calabi–Yau algebra is explicitly given in terms of the underlying combinatoric"



Theorem (Hoffbeck–L.–Vallette to appear in 2024)

Two ΩC -gebras are ∞ -quasi-isomorphic if and only if they are related by a zig-zag of (strict) quasi-isomorphisms:

This result will be useful to prove some formality results.

Hoffbeck-L.-Vallette to appear in 2024

We construct a simplicial enrichment $\Delta-\Omega \mathscr{C}\text{-geb}$ of the category $\Omega \mathscr{C}\text{-geb}$ such that

$$\pi_0(\Delta - \Omega \mathscr{C}\text{-geb}) \cong \operatorname{ho}(\infty - \Omega \mathscr{C}\text{-geb}).$$

Thanks for your attention.