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INTRODUCTION
SMOOTH CY AND PRE-CY

Earlier this morning, we heard about the algebraic definition of a pre-CY structure, and about the relation
between smooth CY/pre-CY structures on some algebra/category to (derived) symplectic geometry on its
space of representations.

I would like to start with two complementary perspectives on this relation.
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INTRODUCTION
SMOOTH CY AND PRE-CY

Partially defined oriented 2d TQFTs
A CY algebra A is the data of an oriented 2d TQFTs which assigns HH∗(A) to the circle.
▶ Costello (2006): explicit description for proper CY structures on dg categories. Recall:

ω : HH∗(A) → k[−n], factoring through HH∗(A) → HC∗(A) ∼= HH∗(A)S1

is proper CY structure if induces Hom(X ,Y ) ∼= Hom(Y ,X )∨[−n]. Gives TQFT structure:

Ccell
∗ (M framed

g,r ,s ,Ld)⊗ C∗(A)⊗r → C∗(A)⊗s (1)

for all r ≥ 1, s ≥ 0.That is, 2d cobordisms with at least one input, or gen. by handles of index 1 and 2
▶ Lurie (2010): abstractly, dual story should exist for smooth CY structures, that is: 1 for all

r ≥ 0, s ≥ 1, 2d cobordisms with at least one output, or gen. by handles of index 0 and 1
▶ KTV1: explicit description of partially-defined TQFT structure on HH∗(A) for (A,m) an A∞-category

with n-dim. pre-CY structure: 1 for all r ≥ 1, s ≥ 1, 2d cobordisms with at least one input and at least
one output, or gen. by handles of index 1 only

ALEX TAKEDA INVERTING SMOOTH CALABI-YAU STRUCTURES IN PRACTICE 2 / 15



INTRODUCTION
SMOOTH CY AND PRE-CY

Noncommutative geometry
‘Kontsevich-Soibelman’ perspective on A∞-algebras:

A∞-algebra(A, µ) = noncommutative space XA + homological vector field Q

Have a correspondence between Hochschild cochains of A and vector fields on XA.
Picking basis xi , as a graded vector space, A = ring of functions on XA, , if µr (xi1 , . . . , xir ) =

∑
ci;i1,...,ir xi ,

then Q =
∑

ci;i1,...,ir xi1 . . . xir∂i . Homological if [µ, µ] = 0 ⇔ [Q,Q] = 0.

Can extend this correspondence
▶ negative cyclic homology of A and closed differential forms on XA, ddR ↔ B.
▶ ‘higher’ Hochschild cohomology of A and polyvector fields on XA, necklace bracket ↔

Schouten-Nijenhuis bracket.

Under (1), smooth CY structure on A ↔ symplectic form on XA. Under (2), pre-CY structure on A ↔
Poisson bivector field on XA.
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INTRODUCTION
NONDEGENERACY CONDITION

The two perspectives suggest that, on a smooth A, one should be able to construct a pre-CY structure
from a smooth CY structure. NC geometry perspective suggests that there is a notion of nondegeneracy
for pre-CY structures = nondegeneracy of Poisson bivector in differential geometry. Also suggest that
smooth CY and nondegenerate pre-CY should be in an inverse relation.

Let us write m = µ+ m(2) + m(3) + . . . , m(k) an element of cohomological degree nk − n − 2k + 4 in

C∗
(k)(A) =

∏
Hom(A[1]⊗(r1+···+rk ),A⊗k)

Proposition 1

When A is smooth, there is a quasi-isomorphism C∗
(k)(A) ≃ HomAe(A, (A!)⊗A(k−1)).
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INTRODUCTION
NONDEGENERACY CONDITION

Definition 1

(Kontsevich-Vlassopoulos ca. 2013) The pre-CY structure m is nondegenerate if α = m(2) corresponds
to a quasi-isomorphism of A-bimodules A ∼−→ A![d ].

For the other direction, have quasi-isomorphism C∗(A) ≃ HomAe(A!,A). This gives an equivalent
definition:

Definition 2

The pre-CY structure m is nondegenerate if there exists ω ∈ C∗(A) and β ∈ C∗(A) such that

[µ, β] =

α

ω
−

1

These definitions are equivalent (KTV2); the second one can be seen as a chain-level version of the first,
and says that α and ω are inverse to each other.
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INTRODUCTION
NONDEGENERACY CONDITION

Not every α can be lifted to a pre-CY structure. Similarly, not every ω ∈ C∗(A) can be lifted to some
ω̃ ∈ CC−

∗ (A).

Theorem 1

(Kontsevich-Vlassopoulos ca. 2013, Pridham 2015, Yeung 2018, KTV2) Assuming nondegeneracy and
up to homological equivalence, these two lifting problems have the same answer. Moreover, there is a
‘one-to-one’ correspondence between smooth CY structures and nondegenerate pre-CY structures on A.

Note: even if α can be lifted to pre-CY structure, may not be true for every representative of [α]. Helps to
understand correspondence at chain-level, which is the point of KTV2. We use the perspective that this
relation is a noncommutative Legendre transform.
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NC LEGENDRE TRANSFORM
KHUDAVERDIAN-VORONOV’S ODD LEGENDRIAN TRANSFORM

Khudaverdian-Voronov (2008) explain how the relationship between a symplectic form and the inverse
Poisson bivector field is a type of Legendre transform on odd co/tangent bundles. And generalize to a
one-to-one correspondence between ‘homotopy symplectic forms’ and ‘homotopy Poisson brackets’.

{ω = ω2 + ω3 + . . . } ↔ {P = P2 + P3 + . . . }

where ω2 ∈ Ω2(M) is nondegenerate, ωi closed, Pi is i-polyvector field and P satisfies [P,P]SN = 0.

Interpreting ω as a function on the odd tangent bundle ΠTM and P as a function on the odd cotangent
bundle ΠT∗M, the relation above is analogous to the fiberwise Legendre transform between functions on
total space of a vector bundle and its dual.

Can deform to allow for P = P1 + P2 + P3 + . . . , and on the LHS deform the closed condition to
(d − LP1)ω = 0.
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NC LEGENDRE TRANSFORM
KHUDAVERDIAN-VORONOV’S ODD LEGENDRIAN TRANSFORM

Summarizing this Legendre transform, from P to ω: pick basis {x i}, write ∂i = ∂/∂x i and polyvector field
P ∈ O(ΠT ∗M) as

P =
1
2!

P ij
2∂i∂j +

1
3!

P ijk
3 ∂i∂j∂k + . . .

1. Write the fiberwise derivative FP : O(ΠTM) → O(ΠT ∗M), given in coordinates by

dx i =
∂P
∂(∂i)

If P2 nondegenerate, then this is an isomorphism of function rings.

2. Take energy function eP = ∂i
∂P
∂∂i

− P =
∑

(k − 1)1/k!
P

i1...ik
k

3. Take the inverse image of the energy function ω = FP−1(eP) ∈ O(ΠTM) = Ω(M).

In this case, end up with ω = ω2 + ω3 + . . . , and relation

ddR ω = 0 ⇔ [P,P]SN = 0
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NC LEGENDRE TRANSFORM
NONCOMMUTATIVE VERSION

The description in KTV2 is a noncommutative analog of Khudaverdian-Voronov’s Legendre transform.
The fiberwise derivative FP is more naturally thought of as a variational derivative. In nc world, would be
the tangent to the ‘map of moduli spaces’

M (smooth CY structures) → M (pre-CY structures)

We know the tangent spaces are CC∗
−(A) on the LHS, and

C∗
[n](A) =

⊕
k≥1

C∗
(k ,n)(A)

with differential given by [m,−], necklace bracket with a pre-CY structure.

Proposition 2

(KTV2) There is a natural map Γ(m,−) : CC∗
−(A) → C∗

[n](A)[n + 2], defined from moduli spaces of
‘tubes’, which is a quasi-isomorphism if m(2) is nondegenerate.

We then take the ‘energy function’ em =
∑

k≥2(k − 1)m(k).The Legendre transform is

m 7→ (Γ(m,−))−1(em)

and maps nondegenerate pre-CY structures to smooth CY structures.
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INVERTING SMOOTH CY STRUCTURES
IN THEORY

In KTV2, the inverse to m 7→ ω is calculated iteratively; we fix ω and start with a symmetrized solution
m(2) = α to

[µ, β] =

α

ω
−

1

then at each stage, prove that MC equation 2[µ,m(ℓ)] =
∑ℓ−1

i=2 [m(i),m(ℓ−i+1)] has a solution of the form

m(ℓ) =
1

ℓ− 1

(
[µ, β(ℓ)] + [m(2), β(ℓ−1)] + · · ·+ [m(ℓ−1), β(2)] + Γ0

(ℓ)(ω) + · · ·+ Γℓ−2
(ℓ) (ωℓ−2)

)
for some element β(2) + β(3) + · · ·+ β(ℓ) ∈ C∗

[d](A) which is guaranteed to exist, and linear combinations

of tube quivers Γ(ℓ) = Γ0
(ℓ) + · · ·+ Γℓ−2

(ℓ) .

Very non-explicit: β depends on ‘internal structure’ of A, and Γ(ℓ) is complicated.
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INVERTING SMOOTH CY STRUCTURES
IN PRACTICE

In practice, it is often enough to calculate α, and then solve for m(3),m(4), . . . using pre-CY equations.
Not always guaranteed to work for any A and choice of chain-level α, but in some special cases yes.
Unique chain-level representative: by KTV2, given nondegenerate [α], if its inverse admits a lift to
negative cyclic homology, there is some chain representative which admits a lift to a pre-CY structure. If α
is uniquely determined from [α], it must be the right class!

Example 1

(RTW) Homology algebra A = H∗(ΩSn, k) = k[t], homological deg(t) = n − 1 ≥ 1, with smooth n-dim CY
structure given by negative cyclic lift of ω = 1[t]. Only chain (up to scaling) in that degree, and similarly
the only solution to α is

α

tk

α(∅, tk)′ α(∅, tk)′′
α(∅, tk)′ ⊗ α(∅, tk)′′ =

∑
0≤i≤k−1

t i ⊗ tk−1−i

α

tk

α(tk ,∅)′ α(tk ,∅)′′

α(tk ,∅)′ ⊗ α(tk ,∅)′′ = (−1)n
∑

0≤i≤k−1

t i ⊗ tk−1−i

In fact, taking m = µ+ α gives a pre-CY structure.
ALEX TAKEDA INVERTING SMOOTH CALABI-YAU STRUCTURES IN PRACTICE 11 / 15



INVERTING SMOOTH CY STRUCTURES
IN PRACTICE

Degree reasons (simpler): sometimes, for degree reasons only finitely number of

mr1,...,rk
(k) ∈ Hom(A⊗

∑
ri ,A⊗k), deg = nk − n − 2k + 4 −

∑
ri

can be nonzero.

Example 2

(RTW) Let A = H∗(ΩS1,k) = k[t , t−1], deg(t) = 0. Want pre-CY structure of dimension 1. Only nonzero
possibilities are (k , (ri)) = (1, (2)), (2, (0, 1)), (2, (1, 0)), (3, (0, 0, 0)). Fixing ω = t−1[t], we have unique
solution to inverse problem

α(tk ,∅) = χ1≤k

1
2
(1 ⊗ tk + tk ⊗ 1)−

∑
1≤i≤k−1

t i ⊗ tk−i


+ χk≤−1

1
2
(1 ⊗ tk + tk ⊗ 1) +

∑
k+1≤i≤−1

t i ⊗ tk−i


α(∅, tk) = −α(tk ,∅) and m(3) =

1
41 ⊗ 1 ⊗ 1.
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INVERTING SMOOTH CY STRUCTURES
IN PRACTICE

Degree reasons (fancier): sometimes can find model with some manifest locality property for bimodules.
Recall that for smooth A, we have C∗

(k)(A) ≃ HomAe(A∆, (A!)⊗A(k−1)).

Example 3

(KTV1) Let X be a Fano variety with A = End(E) for E generator of Db(Coh(X )). Have equivalence of
categories between A-bimodules and quasi-coherent sheaves on X × X.

A∆ ↔ ∆∗O∆, A! ↔ ∆∗(ω
−1
X )[−n]

Therefore can produce α from anticanonical section OX → ω−1
X . Equation for m(k) is

[µ,m(k)] = closed element of degree nk − n − 2k + 5 in C∗
(k)(A),

whose class lives in Ext−2k+5(∆∗O,∆∗ω
1−k
X ) = 0 when k ≥ 3 since the two objects are representable

by ordinary coherent sheaves in degree zero.

In other words, found local description of the Hom spaces which makes solution to lifting problem
manifest.
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POINCARÉ DUALITY
SIMPLICIAL PATH CATEGORIES

What follows is work in progress with M. Rivera and Z. Wang. We describe how to use the triangulation Λ
(simplicial set) of a manifold to put a pre-CY structure on a dg category PΛ. This simplicial path category
has
▶ Objects: elements of Λ0, that is, vertices
▶ Morphisms: ‘open necklaces of simplices’, with 1-simplices inverted.

This dg category is smooth, and there is an quasi-isomorphism PΛ ≃ C∗(Ω|Λ|).
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POINCARÉ DUALITY
LOCAL POINCARÉ STRUCTURES

If the triangulation is fine enough, we define a notion of local Poincaré duality structure on simplicial sets,
and prove:

Theorem 2

Given an n-dimensional local Poincaré duality structure on Λ, there is a local chain-level m(2) ∈ Cn
(2)(PΛ).

Locality is a bit complicated, basically says that if necklaces ‘above’ and ‘below’ live far away from each
other in M, m(2) vanishes. There is also a version if Λ has nontrivial boundary, get a chain-level m(2)
which is degenerate. Either way,

Proposition 3

Any local closed element of Cn
(2)(PΛ) can be lifted to a pre-CY structure.

Follows from studying vanishing under certain length filtrations, but conceptually from the fact that a small
neighborhood of M ↪→

∆
M × M homotopy retracts onto M.
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