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Disk

A disk means:

The 2-dimensional disk with punctures on boundary

Each punctured is assigned either:
”+” (”input”) or ”–” (”output”).

We only remember the diffeomorphism type of a disk.
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D-shaped maps

Fix A ∈ grVectk .

Given a disk D, a D-shaped map on A is a k-linear map

A⊗Σ+ → A⊗Σ−

where Σ+ = {”+” punctures} and Σ− = { ”–” punctures}.
Example.

The ordering is important.

Wai-kit Yeung wkyeung@proton.me Introduction to pre-Calabi-Yau structures November 3, 2023 3 / 32



Pre-Calabi-Yau algebras

We will consider a collection of maps π which to each disk D assigns a
D-shaped map on A

π(D) : A⊗Σ+ → A⊗Σ−

Definition

The graded vector space A, together with this collection of maps π is said
to be a pre-Calabi-Yau algebra if it satisfies

π ◦ π = 0
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Gluing of disks

We can glue disks along punctures with opposite polarity.

We can also compose the maps as we glue:

This gives a D-shaped map A⊗3 → A⊗4.

Wai-kit Yeung wkyeung@proton.me Introduction to pre-Calabi-Yau structures November 3, 2023 5 / 32



The condition π ◦ π = 0

Suppose we are given a collection π of maps.

For any given disk D,

Each way of writing D as a gluing D = D1#D2

=⇒ a D-shaped map π(D1) ◦ π(D2)

The condition π ◦ π = 0 then says:

For each disk D, we require∑
D=D1#D2

±π(D1) ◦ π(D2) = 0

Wai-kit Yeung wkyeung@proton.me Introduction to pre-Calabi-Yau structures November 3, 2023 6 / 32



The condition π ◦ π = 0

i.e., we require that, for each disk D, we have
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Example 1

Consider the collection that is nonzero only on the shape

There are two ways to combine two of this disk:

µ(µ(f , g), h)− µ(f , µ(g , h)) = 0

Thus (A, µ) is a (non-unital) associative algebra.
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Example 2

Consider the collection that is nonzero only on the shapes

The requirement π ◦ π = 0 gives one relation for each n ≥ 1:

∑
r+s+t=n

±µr+t+1(a1, . . . , ar , µs(ar+1, . . . , ar+s), ar+s+1, . . . , an) = 0

i.e., (A, µ1, µ2, . . .) is an A∞-algebra.
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Example 3, 4

Example 3) Consider the collection that is nonzero only on the shape

∆ : A→ A⊗ A

Then (A,∆) is a coassociative coalgebra.

Example 4) Consider the collection that is nonzero only on the shapes

µ : A⊗ A→ A and ∆ : A→ A⊗ A

Then (A, µ,∆) is an infinitesimal bialgebra that satisfies a certain
derivation property.
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Example 5

Consider the collection that is nonzero only on the shapes

We will rewrite P(a, b) = {{a, b}} ∈ A⊗ A.

0) The disk on the right has an internal C2 symmetry. Accordingly,
{{−,−}} : A⊗ A→ A⊗ A is required to be C2-invariant.

Gluing these disks gives rise to three kinds of disks:

1) First disk ⇒ (A, µ) is an associative algebra.
2) Second disk ⇒ {{−,−}} is a derivation in each variable.
3) Third disk ⇒ {{−,−}} satisfies the “double Jacobi identity”.

i.e., (A, µ,P) is a double Poisson algebra.
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A closer look

Fix A ∈ grVectk . Fix m ∈ Z. Define

X(p)(A;m) =


Collection F that assigns a D-shaped map
F (D) : (A[1])⊗Σ− → (A[−m])⊗p

to each disk D with p outputs


Theorem [Kontsevich-Vlassopoulos]

There is a graded Lie bracket

{−,−} : X(p)(A;m)⊗ X(q)(A;m) → X(p+q−1)(A;m)

given by the diagram

Wai-kit Yeung wkyeung@proton.me Introduction to pre-Calabi-Yau structures November 3, 2023 12 / 32



A closer look

This bracket gives a graded Lie algebra structure on

X̂≥1(A;m)[m + 1] :=
∏
p≥1

X(p)(A;m)[m + 1]

Definition

Let m = 2− n. An n-pre-Calabi-Yau algebra is a graded vector space A,
together with a Maurer-Cartan element in the graded Lie algebra
X̂≥1(A;m)[m + 1].

In other words, we have π = π1 + π2 + π3 + ... satisfying {π, π} = 0.

From now on, we ignore the homological shifts, and so we neglect m.
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pre-Calabi-Yau structures

Recall that the bracket {−,−} has weight grading −1:

{−,−} : X(p)(A)⊗ X(q)(A) → X(p+q−1)(A)

In particular, X(1)(A) is a Lie subalgebra and X(>1)(A) is a Lie ideal.

Write π = π1 + π≥2.
Then the condition {π, π} = 0 splits into two conditions
1) {π1, π1} = 0
2) {π1, π≥2}+ 1

2{π≥2, π≥2} = 0

Thus, a pre-Calabi-Yau algebra is always an A∞-algebra (A, π1) with extra
structure π≥2.
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pre-Calabi-Yau structures

{−,−} : X(p)(A)⊗ X(q)(A) → X(p+q−1)(A)

Given an A∞ structure π1, then {π1,−} preserves each component
X(q)(A), so that it becomes a chain complex

Definition

The graded vector space X(p)(A) together with the differential
dπ1 = {π1,−} is called the cyclic invariant higher Hochschild cochains on
the A∞ algebra (A, π1).
Thus, (X•(A), dπ1) becomes a DG Lie algebra.

Definition

A pre-Calabi-Yau structure on the A∞ algebra (A, π1) is a Maurer-Cartan
element in the DG Lie algebra (X̂≥2(A), dπ1).
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poly-Hochschild cochains

Recall the definition

X(p)(A) =


Collection F that assigns a D-shaped map
F (D) : A⊗Σ− → A⊗p

to each disk D with p outputs


A disk with p outputs is completely determined by the number of inputs
between the consecutive outputs:

For example, this disk is specified by the sequence (3, 2, 0, 2, 1).
Any cyclic rotation, e.g., (2, 0, 2, 1, 3), defines the same disk.
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Higher Hochschild cochains

Thus we have

X(p)(A) =


Collection F that assigns a D-shaped map
F (D) : A⊗Σ− → A⊗p

to each disk D with p outputs


=

 ∏
(n1,...,np)∈Np

Homk(A⊗n1 ⊗ . . .⊗ A⊗np ,A⊗p)

Cp

=
[
RHom(A⊗p)e (A⊗p, τ (A⊗p)id)

]Cp

1) HomBe (−,−) means B-bimodule map.

2) Recall that A has a free A-bimodule resolution

. . .→ A⊗ A⊗2 ⊗ A→ A⊗ A⊗1 ⊗ A→ A⊗ A⊗0 ⊗ A→ A→ 0

Accordingly, Bar(A)⊗p is a A⊗p-bimodule resolution of itself.
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Noncommutative analogue of Poisson structure

X is a smooth manifold (or variety).
Then a Poisson structure is a bivector field π2 ∈ X2(X ) satisfying
{π2, π2} = 0.

In other contexts (e.g., deformation quantization, derived algebraic
geometry, etc), it is natural to consider generalized Poisson structures

π≥2 = π2 + π3 + . . .

satisfying the Maurer-Cartan equation.

pre-Calabi-Yau structures is a noncommutative analogue of Poisson
structures.
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Noncommutative calculus

Commutative Noncommutative

Commutative algebra Associative algebra
Derived stacks DG categories
Modules or sheaves Bimodules

Differential forms Hochschild homology
Closed forms Negative cyclic homology
de Rham cohomology Periodic cyclic homology
Symplectic structure Calabi-Yau structure

Vector fields Hochschild cohomology
Polyvector fields Poly-Hochschild cohomology
Poisson structure pre-Calabi-Yau structure
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Symplectic structure vs Calabi-Yau structures

Definition

A symplectic structure on X is a closed 2-form whose underlying
2-form determines an isomorphism

Ω1(X )∨
∼=−→ Ω1(X )

of sheaves.

Definition [Ginzburg, Kontsevich-Vlassopoulos, Brav-Dyckerhoff]

An n-Calabi-Yau structure on A is a negative cyclic homology class
η̃ ∈ HC−n (A) whose underlying Hochschild homology class η ∈ HHn(A)
determines an isomorphism

A∨[n]
∼=−→ A

in the derived category of DG bimodules.
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Two flavors of noncommutative algebraic geometry

NC1

For any notion P on varieties/derived stacks, etc, its noncommutative
generalization should be a notion P̃ on associative algebras, such that it
reduces to P for (smooth) commutative algebras.

NC2 [The Kontsevich-Rosenberg principle]

For any structure P on varieties/derived stacks, etc, its noncommutative
analogue should be a structure Pnc on an associative algebra A which
induces the structure P on the moduli space of representations of A.

For example, a Calabi-Yau structure is a noncommutative generalization of
a Calabi-Yau variety; and a noncommutative analogue of a symplectic
structure.
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The Kontsevich-Rosenberg principle

Commutative Noncommutative

Commutative algebra Associative algebra
Derived stacks DG categories
Modules or sheaves Bimodules

Differential forms Hochschild homology
Closed forms Negative cyclic homology
de Rham cohomology Periodic cyclic homology
Symplectic structure Calabi-Yau structure

Vector fields Hochschild cohomology
Polyvector fields Poly-Hochschild cohomology
Poisson structure pre-Calabi-Yau structure

All these can be justified by the Kontsevich-Rosenberg principle.
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Two sides of NC2

Actually, the way I see it, there are two sides of NC2:

Phenomenological side:
The Kontsevich-Rosenberg principle

Ontological side:
Use the analogy

Commutative Noncommutative

Commutative algebra Associative algebra
Derived stacks DG categories
Modules or sheaves Bimodules

together with some aesthetic principles, guided by some basic
examples, to develop noncommutative geometry.

Keypoint: These two sides end up doing the same thing!
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Symplectic and Poisson structure on moduli spaces

Theorem [Pantev-Toën-Vaquié-Vezzosi, Brav-Dyckerhoff, Y.]

Any n-Calabi-Yau structure on A induces a (2− n)-shifted symplectic
structure on the derived moduli stack of representations of A.

Theorem [Y.]

Any n-pre-Calabi-Yau structure on A induces a (2− n)-shifted Poisson
structure on the derived moduli stack of representations of A.
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Koszul duality principle

Cuntz-Quillen resolution Bar resolution

Extended NC differential forms Cyclic bar complex
Smooth/left Calabi-Yau structures Compact/right Calabi-Yau structure

Extended necklace Lie algebra Higher Hochschild cochains
pre-Calabi-Yau structures pre-Calabi-Yau structures

Db
coh(X ) Dperf(X )

WFuk(X ) Fuk(X )

One can often use formulas on one side to guess the formula on the other
side.
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Ribbon dioperads

Classical picture:

Modules Algebrasoo Operadsoo

Proposed picture:

Modules Algebrasoo Operadsoo

· · · Dioperadsoo

· · · Properadsoo regular
patterns

dd

ii

oo

||

...

· · · pre-CY
algebras

oo Ribbon
dioperads

oo
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The theory of operads, revisited

Recall that an operad consists of:

(1) an S-module P.

(2) a collection of composition maps on P
(3) that satisfies certain axioms.

In fact, all the three items flow out of the combinatorics of rooted trees.

e.g., Let f be the category of rooted corolla (morphisms are isomorphisms
of rooted corolla), then an S-module is the same as a functor P : f→ Vect.

The theory of regular patterns [Getzler] or Feynman categories
[Kauffmann-Ward] allows us to replace the combinatorics of rooted trees
by that of other types of graphs.

Replace rooted trees by directed ribbon trees ⇒ theory of ribbon dioperads

Wai-kit Yeung wkyeung@proton.me Introduction to pre-Calabi-Yau structures November 3, 2023 27 / 32



The theory of operads, revisited

For each graded vector space V , there is an operad End(V ). Then a
P-algebra structure on V is a map of operad P → End(V ).

If C is a dg co-operad (all operads and co-operads are assumed to be
non-unital), then HomS−Mod(C,P) is a dg Lie algebra. Moreover, there is
a bijection

MC(HomS−Mod(C,P)) ∼= Homdg−operads(Ω(C),P)
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Ribbon dioperads

Let f be the category of directed ribbon corollas, with morphisms being
isomorphisms of directed ribbon corollas (i.e., same as the “disks” earlier
in this talk).
Then a ribbon dioperad consists of:

(1) an f-module. i.e., a functor P : f→ grVectk .

(2) a collection of composition maps on P
(3) that satisfies certain axioms.

where the appropriate structure maps (2) and axioms (3) flow out of the
combinatorics of directed ribbon trees.
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Ribbon dioperads

(1) For any A ∈ grVectK, there is a ribbon dioperad End(A). Namely,

End(A)(D) = HomK(A⊗Σ+
,A⊗Σ−

)

(2) There is a ribbon co-dioperad C, such that C(D) = K for all directed
ribbon corolla D. Then we have

Homf−Mod(C,End(A))

∼=
∏
p≥0

 ∏
(n1,...,np)∈Np

Homk(A⊗n1 ⊗ . . .⊗ A⊗np ,A⊗p)

Cp
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Ribbon dioperads

Theorem [Y.]

For an ribbon co-dioperad C and any ribbon dioperad P, the graded vector
space Homf−Mod(C,P) has a graded Lie algebra structure.

Theorem [Y.]

There is a cobar construction that gives

MC(Homf−Mod(C,P)) ∼= Homdg−ribbon−dioperad(Ω(C),P)

In particular, consider P = End(A) and C = K, then Ω(K) (cobar of a
point) is the dg ribbon dioperad that controls pre-Calabi-Yau structures.
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pre-Calabi-Yau structures in positive characteristics

For C = K, we have

Homf−Mod(C,End(A))

∼=
∏
p≥0

 ∏
(n1,...,np)∈Np

Homk(A⊗n1 ⊗ . . .⊗ A⊗np ,A⊗p)

Cp

In positive characteristics, we should not take cyclic invariants.

Problem: resolve C = K so that it is projective as f-modules.

Remark: this resembles the problem of finding an E∞-operad (i.e., an
operad that resolves the constant operad K so that it is projective as
S-modules).
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